Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals

Sensors (Basel). 2016 Aug 26;16(9):1371. doi: 10.3390/s16091371.

Abstract

This work presents a new nanocomposite of cerium oxide (ceria) nanoparticles embedded in electrospun PVA nanofibers for optical sensing of radicals in solutions. Our ceria nanoparticles are synthesized to have O-vacancies which are the receptors for the radicals extracted from peroxide in water solution. Ceria nanoparticles are embedded insitu in PVA solution and then formed as nanofibers using an electrospinning technique. The formed nanocomposite emits visible fluorescent emissions under 430 nm excitation, due to the active ceria nanoparticles with fluorescent Ce(3+) ionization states. When the formed nanocomposite is in contact with peroxide solution, the fluorescence emission intensity peak has been found to be reduced with increasing concentration of peroxide or the corresponding radicals through a fluorescence quenching mechanism. The fluorescence intensity peak is found to be reduced to more than 30% of its original value at a peroxide weight concentration up to 27%. This work could be helpful in further applications of radicals sensing using a solid mat through biomedical and environmental monitoring applications.

Keywords: ceria nanoparticles; crosslinking; electrospinning; fluorescence quenching; radicals.