Involvement of the Rcs regulon in the persistence of Salmonella Typhimurium in tomatoes

Environ Microbiol Rep. 2016 Oct;8(5):928-935. doi: 10.1111/1758-2229.12457. Epub 2016 Sep 9.

Abstract

It is becoming clear that human enteric pathogens, like Salmonella, can efficiently colonize vegetative and reproductive organs of plants. Even though the bacterium's ability to proliferate within plant tissues has been linked to outbreaks of salmonellosis, little is known about regulatory and physiological adaptations of Salmonella, or other human pathogens, to their persistence in plants. A screen of Salmonella deletion mutants in tomatoes identified rcsA and rcsB genes as those under positive selection. In tomato fruits, populations of Salmonella rcsB mutants were as much as 100-fold lower than those of the wild type. In the follow-up experiments, competitive fitness of rcsA and rcsB mutants was strongly reduced in tomatoes. Bioinformatics predictions identified a putative Salmonella RcsAB binding box (TTMGGAWWAABCTYA) and revealed an extensive putative RcsAB regulon, of which many members were differentially fit within tomatoes.