Conflict of mitochondrial phylogeny and morphology-based classification in a pair of freshwater gastropods (Caenogastropoda, Truncatelloidea, Tateidae) from New Caledonia

Zookeys. 2016 Jul 6:(603):17-32. doi: 10.3897/zookeys.603.9144. eCollection 2016.

Abstract

Morphological classification and mitochondrial phylogeny of a pair of morphologically defined species of New Caledonian freshwater gastropods, Hemistomia cockerelli and Hemistomia fabrorum, were incongruent. We asked whether these two nominal species can be unambiguously distinguished based on shell morphology or whether the taxonomic discrepancy inferred from these character types was reflected in the variation of shell morphology. Our investigations were based on phylogenetic analyses of a fragment of the mitochondrial cytochrome c oxidase subunit I, geometric morphometric analyses as well as micro computer tomography. The species presorted to morphospecies by eye overlapped in shell shape. However, statistically, all shells were correctly assigned, but not all of them significantly. Qualitatively, both nominal species can be unambiguously distinguished by the presence/absence of a prominent denticle within the shell. In the phylogenetic analyses, individuals from three populations clustered with the "wrong" morphospecies. In the absence of data from multiple loci, it was assumed for the single specimen from one of these populations that its misplacement was due to a recent hybridization event, based on its very shallow position in the tree. For the other two cases of misplacement neither introgression nor incomplete lineage sorting could be ruled out. Further investigations have to show whether the morphological overlap has a genetic basis or is due to phenotypic plasticity. In conclusion, despite their partly unresolved relationships Hemistomia cockerelli and Hemistomia fabrorum may be considered sister species, which are reliably diagnosable by the presence or absence of the denticle, but have not yet fully differentiated in all character complexes investigated.

Keywords: Geometric morphometrics; South Pacific; hybridization; incomplete lineage sorting; introgression; morphology; shape; taxonomy.