A novel fluorescence "on-off-on" chemosensor for Hg(2+)via a water-assistant blocking heavy atom effect

Dalton Trans. 2016 Oct 14;45(38):14948-53. doi: 10.1039/c6dt02274j. Epub 2016 Aug 23.

Abstract

Upper rim pyrene-functionalized hexahomotrioxacalix[3]arene L was synthesized via Click chemistry, and its fluorescence behaviors toward several common metal cations were investigated. L exhibited a significant fluorescence quenching response to Hg(2+) in CH3CN solution, which was unaffected by the coexistence of other competitive metal cations. Thus, L can be utilized as a highly selective and sensitive fluorescent chemosensor for Hg(2+) with a detection limit in the nM level. Interestingly, the quenched fluorescence emission can be successfully revived upon the addition of water. In this process, the heavy atom effect of Hg(2+) can be blocked by further coordination of a water molecule and resulted in the revival of the fluorescence emission of L/Hg(2+) complex. Particularly, other polar solvents such as CH3OH and CH3CH2OH also have the ability to revive the fluorescence emission of the L/Hg(2+) complex, but on a much smaller scale than observed for H2O. The heavy atom effect and blocking thereof were demonstrated within the same system by the use of a C3-symmetric homooxacalix[3]arene scaffold. The present studies provided further evidence for the blocking heavy atom effect.