Strain and Ferroelectric-Field Effects Co-mediated Magnetism in (011)-CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 Multiferroic Heterostructures

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):24198-204. doi: 10.1021/acsami.6b07584. Epub 2016 Aug 29.

Abstract

Electric-field mediated magnetism was investigated in CoFe2O4 (CFO, deposited by reactive cosputtering under different oxygen flow rates) films fabricated on (011)-Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrates. Ascribed to the volatile strain effect of PMN-PT, the magnetization of the CFO films decreases along the [01-1] direction whereas it increases along the [100] direction under the electric field, which is attributed to the octahedron distortion in the spinel ferrite. Moreover, a nonvolatile mediation was obtained in the CFO film with low oxygen flow rate (4 sccm), deriving from the ferroelectric-field effect, in which the magnetization is different after removing the positive and negative fields. The cooperation of the two effects produces four different magnetization states in the CFO film with low oxygen flow rate (4 sccm), compared to the only two different states in the CFO film with high oxygen flow rate (10 sccm). It is suggested that the ferroelectric-field effect is related to the oxygen vacancies in CFO films.

Keywords: CoFe2O4 films; ferroelectric-field effect; multiferroic heterostructures; oxygen vacancy; strain.