The Bacterial Community Structure and Dynamics of Carbon and Nitrogen when Maize (Zea mays L.) and Its Neutral Detergent Fibre Were Added to Soil from Zimbabwe with Contrasting Management Practices

Microb Ecol. 2017 Jan;73(1):135-152. doi: 10.1007/s00248-016-0807-8. Epub 2016 Aug 18.

Abstract

Water infiltration, soil carbon content, aggregate stability and yields increased in conservation agriculture practices compared to conventionally ploughed control treatments at the Henderson research station near Mazowe (Zimbabwe). How these changes in soil characteristics affect the bacterial community structure and the bacteria involved in the degradation of applied organic material remains unanswered. Soil was sampled from three agricultural systems at Henderson, i.e. (1) conventional mouldboard ploughing with continuous maize (conventional tillage), (2) direct seeding with a Fitarelli jab planter and continuous maize (direct seeding with continuous maize) and (3) direct seeding with a Fitarelli jab planter with rotation of maize sunn hemp (direct seeding with crop rotation). Soil was amended with young maize plants or their neutral detergent fibre (NDF) and incubated aerobically for 56 days, while C and N mineralization and the bacterial community structure were monitored. Bacillus (Bacillales), Micrococcaceae (Actinomycetales) and phylotypes belonging to the Pseudomonadales were first degraders of the applied maize plants. At day 3, Streptomyces (Actinomycetales), Chitinophagaceae ([Saprospirales]) and Dyella (Xanthomonadales) participated in the degradation of the applied maize and at day 7 Oxalobacteraceae (Burkholderiales). Phylotypes belonging to Halomonas (Oceanospirillales) were the first degraders of NDF and were replaced by Phenylobacterium (Caulobacterales) and phylotypes belonging to Pseudomonadales at day 3. Afterwards, similar bacterial groups were favoured by application of NDF as they were by the application of maize plants, but there were also clear differences. Phylotypes belonging to the Micrococcaceae and Bacillus did not participate in the degradation of NDF or its metabolic products, while phylotypes belonging to the Acidobacteriaceae participated in the degradation of NDF but not in that of maize plants. It was found that agricultural practices had a limited effect on the bacterial community structure, but application of organic material altered it substantially.

Keywords: Conventional mouldboard ploughing; Direct seeding; Maize/sunn hemp crop rotation; Soil bacterial community.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / metabolism*
  • Carbon / metabolism*
  • Fertilizers / analysis*
  • Microbiota
  • Nitrogen / metabolism*
  • Soil / chemistry*
  • Soil Microbiology
  • Zea mays / metabolism
  • Zea mays / microbiology*
  • Zimbabwe

Substances

  • Fertilizers
  • Soil
  • Carbon
  • Nitrogen