Probing the Fractal Pattern of Heartbeats in Drosophila Pupae by Visible Optical Recording System

Sci Rep. 2016 Aug 18:6:31950. doi: 10.1038/srep31950.

Abstract

Judiciously tuning heart rates is critical for regular cardiovascular function. The fractal pattern of heartbeats - a multiscale regulation in instantaneous fluctuations - is well known for vertebrates. The most primitive heart system of the Drosophila provides a useful model to understand the evolutional origin of such a fractal pattern as well as the alterations of fractal pattern during diseased statuses. We developed a non-invasive visible optical heart rate recording system especially suitable for long-term recording by using principal component analysis (PCA) instead of fluorescence recording system to avoid the confounding effect from intense light irradiation. To deplete intracellular Ca(2+) levels, the expression of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) was tissue-specifically knocked down. The SERCA group shows longer heart beat intervals (Mean ± SD: 1009.7 ± 151.6 ms) as compared to the control group (545.5 ± 45.4 ms, p < 0.001). The multiscale correlation of SERCA group (scaling exponent: 0.77 ± 0.07), on the other hand, is weaker than that of the control Drosophila (scaling exponent: 0.85 ± 0.03) (p = 0.016).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Drosophila / growth & development
  • Drosophila / physiology*
  • Endoplasmic Reticulum / metabolism
  • Fractals*
  • Heart Rate*
  • Larva / physiology
  • Optical Devices
  • Principal Component Analysis
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases / metabolism

Substances

  • Sarcoplasmic Reticulum Calcium-Transporting ATPases
  • Calcium