Validation of a simplified scatter correction method for 3D brain PET with 15O

Ann Nucl Med. 2016 Dec;30(10):690-698. doi: 10.1007/s12149-016-1114-7. Epub 2016 Aug 17.

Abstract

Objective: Positron emission tomography (PET) enables quantitative measurements of various biological functions. Accuracy in data acquisition and processing schemes is a prerequisite for this. The correction of scatter is especially important when a 3D PET scanner is used. The aim of this study was to validate the use of a simplified calculation-based scatter correction method for 15O studies in the brain.

Methods: We applied two scatter correction methods to the same 15O PET data acquired from patients with cerebrovascular disease (n = 10): a hybrid dual-energy-window scatter correction (reference method), and a deconvolution scatter correction (simplified method). The PET study included three sequential scans for 15O-CO, 15O-O2, and 15O-H2O, from which the following quantitative parameters were calculated, cerebral blood flow, cerebral blood volume, cerebral metabolic rate of oxygen, and oxygen extraction fraction.

Results: Both scatter correction methods provided similar reconstruction images with almost identical image noise, although there were slightly greater differences in white-matter regions compared with gray matter regions. These differences were also greater for 15O-CO than for 15O-H2O and 15O-O2. Region of interest analysis of the quantitative parameters demonstrated that the differences were less than 10 % (except for cerebral blood volume in white-matter regions), and the agreement between the methods was excellent, with intraclass correlation coefficients above 0.95 for all the parameters.

Conclusions: The deconvolution scatter correction despite its simplified implementation provided similar results to the hybrid dual-energy-window scatter correction. We consider it suitable for application in a clinical 15O brain study using a 3D PET scanner.

Keywords: 15O; Brain; PET; Scatter correction.

Publication types

  • Validation Study

MeSH terms

  • Brain / diagnostic imaging*
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Oxygen Radioisotopes*
  • Positron-Emission Tomography*
  • Scattering, Radiation*

Substances

  • Oxygen Radioisotopes