The influence of LiH on the rehydrogenation behavior of halide free rare earth (RE) borohydrides (RE = Pr, Er)

Phys Chem Chem Phys. 2016 Sep 21;18(35):24387-95. doi: 10.1039/c6cp04523e. Epub 2016 Aug 17.

Abstract

Rare earth (RE) metal borohydrides are receiving immense consideration as possible hydrogen storage materials and solid-state Li-ion conductors. In this study, halide free Er(BH4)3 and Pr(BH4)3 have been successfully synthesized for the first time by the combination of mechanochemical milling and/or wet chemistry. Rietveld refinement of Er(BH4)3 confirmed the formation of two different Er(BH4)3 polymorphs: α-Er(BH4)3 with space group Pa3[combining macron], a = 10.76796(5) Å, and β-Er(BH4)3 in Pm3[combining macron]m with a = 5.4664(1) Å. A variety of Pr(BH4)3 phases were found after extraction with diethyl ether: α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2465(1) Å, β-Pr(BH4)3 in Pm3[combining macron]m with a = 5.716(2) Å and LiPr(BH4)3Cl in I4[combining macron]3m, a = 11.5468(3) Å. Almost phase pure α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2473(2) Å was also synthesized. The thermal decomposition of Er(BH4)3 and Pr(BH4)3 proceeded without the formation of crystalline products. Rehydrogenation, as such, was not successful. However, addition of LiH promoted the rehydrogenation of RE hydride phases and LiBH4 from the decomposed RE(BH4)3 samples.