Mechanisms of outer membrane vesicle entry into host cells

Cell Microbiol. 2016 Nov;18(11):1508-1517. doi: 10.1111/cmi.12655. Epub 2016 Sep 16.

Abstract

Bacterial outer membrane vesicles (OMVs) are nano-sized compartments consisting of a lipid bilayer that encapsulates periplasm-derived, luminal content. OMVs, which pinch off of Gram-negative bacteria, are now recognized as a generalized secretion pathway which provides a means to transfer cargo to other bacterial cells as well as eukaryotic cells. Compared with other secretion systems, OMVs can transfer a chemically extremely diverse range of cargo, including small molecules, nucleic acids, proteins, and lipids to proximal cells. Although it is well recognized that OMVs can enter and release cargo inside host cells during infection, the mechanisms of host association and uptake are not well understood. This review highlights existing studies focusing on OMV-host cell interactions and entry mechanisms, and how these entry routes affect cargo processing within the host. It further compares the wide range of methods currently used to dissect uptake mechanisms, and discusses potential sources of discrepancy regarding the mechanism of OMV uptake across different studies.

Publication types

  • Review

MeSH terms

  • Cell-Derived Microparticles / metabolism*
  • Endocytosis
  • Gram-Negative Bacteria / physiology*
  • Gram-Negative Bacterial Infections / microbiology*
  • Host-Pathogen Interactions
  • Humans
  • Membrane Fusion