Magnitude and Directionality of Halogen Bond of Benzene with C6F5X, C6H5X, and CF3X (X = I, Br, Cl, and F)

J Phys Chem A. 2016 Sep 8;120(35):7020-9. doi: 10.1021/acs.jpca.6b06295. Epub 2016 Aug 24.

Abstract

Geometries of benzene complexes with C6F5X, C6H5X, and CF3X (X is I, Br, Cl, and F) were optimized, and their interaction energies were evaluated. The CCSD(T) interaction energies at the basis set limit (Eint) of C6F5X (X is I, Br, Cl, and F) with benzene were -3.24, -2.88, -2.31, and -0.92 kcal mol(-1). Eint of C6H5X (X is I, Br, and Cl) with benzene were -2.31, -1.97, and -1.48 kcal mol(-1). The fluorination of halobenzenes slightly enhances the attraction. Eint of CF3X (X is I, Br, Cl, and F) with benzene (-3.11, -2.74, -2.22, and -0.71 kcal mol(-1)) were very close to Eint of corresponding C6F5X with benzene. In contrast to the halogen bond of iodine and bromine with pyridine (n-type halogen bond acceptor) where the main cause of the attraction is the electrostatic interactions, that of halogen bond with benzene (p-type acceptor) is dispersion interaction. In the halogen bonds with p-type acceptors (halogen-π interactions), the electrostatic interactions and induction interactions are small. The overall orbital-orbital interactions are repulsive. The directionality of halogen bonds with p-type acceptors is very weak, owing to the weak electrostatic interactions, in contrast to the strong directionality of the halogen bonds with n-type acceptors and hydrogen bonds.