Unsymmetric (μ-oxido)/(μ-pyrazolato) and Symmetric (μ-pyrazolato)2 Bridged Diosmium Frameworks: Electronic Structure and Magnetic Properties

Inorg Chem. 2016 Sep 6;55(17):8396-406. doi: 10.1021/acs.inorgchem.6b00898. Epub 2016 Aug 11.

Abstract

The present article deals with the structurally characterized unsymmetric oxido/pyrazolato-bridged [(bpy)2Os(III)(μ-oxido)(μ-pz)Os(III)(bpy)2](ClO4)3 ([1](ClO4)3) and symmetric dipyrazolato-bridged [(bpy)2Os(II)(μ-pz)2Os(II)(bpy)2](ClO4)2 ([2](ClO4)2) (pz = pyrazolato, bpy = 2,2'-bipyridine) complexes with the Os···Os separations of 3.484 and 4.172 Å, respectively. The anti-ferromagnetically coupled Os(III) centers [E(S = 1)-E(BS(1,1) S = 0) = 322.504 cm(-1)] in 1(3+) and diamagnetic (S = 0) 2(2+) exhibit well-resolved (1)H NMR resonances. [1](ClO4)3 shows temperature- and magnetic field-dependent paramagnetism at low magnetic field and diamagnetism at high magnetic field. 1(3+) and 2(2+) display successive metal-based oxidation processes involving the intermediate mixed-valent states and isovalent congeners: Os(IV)Os(IV) (1(5+))→Os(III)Os(IV) (1(4+))⇌Os(III)Os(III) (1(3+))⇌Os(III)Os(II) (1(2+)) and Os(III)Os(III) (2(4+))→Os(II)Os(III) (2(3+))⇌Os(II)Os(II) (2(2+)) as well as bpy-centered reductions. The effect of π donor O(2-) and σ/π-donating pz(-) in 1(3+) and 2(2+), respectively, leads to varying oxidation state of the metal ions in the isolated complexes: Os(III)Os(III) versus Os(II)Os(II). UV-visible-near-IR-electron paramagnetic resonance spectro-electrochemistry and density functional theory (DFT)/time-dependent DFT calculations collectively reveal overlapping of the metal- and ligand (pz, O, bpy)-based frontier orbitals in the delocalized mixed-valent states in 1(4+) and 1(2+) with comproportionation constant (Kc) value > 1 × 10(14) as well as in isovalent 1(3+), resulting in mixed metal/ligand to metal/ligand near-IR transitions in all the three states. The mixed-valent Os(II)Os(III) state in 2(3+) exhibits high Kc value of 1 × 10(22) corresponding to a strong electrochemical coupling situation. However, closeness of the bandwidth (Δν1/2, 4861 cm(-1)) of broad and weak intervalence charge transfer transition of 2(3+) at 1360 nm (ε/M(-1) cm(-1): 490) with the calculated Δν1/2 of 4121 cm(-1) based on the Hush formula as well as spin-density distributions of Os1: 0.811/0.799, Os2: 0.045/0042, and pz: 0.162/0.173 in meso and rac diastereomeric forms, respectively, attribute its localized class II state.