DTMiner: identification of potential disease targets through biomedical literature mining

Bioinformatics. 2016 Dec 1;32(23):3619-3626. doi: 10.1093/bioinformatics/btw503. Epub 2016 Aug 9.

Abstract

Motivation: Biomedical researchers often search through massive catalogues of literature to look for potential relationships between genes and diseases. Given the rapid growth of biomedical literature, automatic relation extraction, a crucial technology in biomedical literature mining, has shown great potential to support research of gene-related diseases. Existing work in this field has produced datasets that are limited both in scale and accuracy.

Results: In this study, we propose a reliable and efficient framework that takes large biomedical literature repositories as inputs, identifies credible relationships between diseases and genes, and presents possible genes related to a given disease and possible diseases related to a given gene. The framework incorporates name entity recognition (NER), which identifies occurrences of genes and diseases in texts, association detection whereby we extract and evaluate features from gene-disease pairs, and ranking algorithms that estimate how closely the pairs are related. The F1-score of the NER phase is 0.87, which is higher than existing studies. The association detection phase takes drastically less time than previous work while maintaining a comparable F1-score of 0.86. The end-to-end result achieves a 0.259 F1-score for the top 50 genes associated with a disease, which performs better than previous work. In addition, we released a web service for public use of the dataset.

Availability and implementation: The implementation of the proposed algorithms is publicly available at http://gdr-web.rwebox.com/public_html/index.php?page=download.php The web service is available at http://gdr-web.rwebox.com/public_html/index.php CONTACT: jenny.wei@astrazeneca.com or kzhu@cs.sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online.

MeSH terms

  • Algorithms*
  • Biomedical Research
  • Data Mining*
  • Disease*
  • Gene Library*
  • Humans
  • Periodicals as Topic*