One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields

Nanoscale. 2016 Aug 18;8(33):15281-7. doi: 10.1039/c6nr03125k.

Abstract

A one-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots (CDs) with ultra-high fluorescence quantum yields (QYs) of 99% is reported. These ultra-high QY CDs were synthesized using citric acid and amino compound-containing hydroxyls like ethanolamine and tris(hydroxylmethyl)aminomethane. Amino and carboxyl moieties can form amides through dehydration condensation reactions, and these amides act as bridges between carboxyl and hydroxyl groups, and modify hydroxyl groups on the surface of the CDs. The entire reaction can be carried out within 5 min. When the molar ratio of reactants is 1 : 1, the hydroxyl and graphitic nitrogen content is the highest, and the synergy leads to a high ratio between the radiative transition rate and nonradiative transition rate as well as a high QY. The developed pathway to N-doped hydroxyl-functionalized CDs can provide unambiguous and remarkable insights into the design of highly luminescent functionalized carbon dots, and expedite the applications of CDs.