Poly(polyol sebacate) Elastomers as Coatings for Metallic Coronary Stents

Macromol Biosci. 2016 Nov;16(11):1678-1692. doi: 10.1002/mabi.201600105. Epub 2016 Aug 8.

Abstract

Biocompatible polymeric coatings for metallic stents are desired, as currently used materials present limitations such as deformation during degradation and exponential loss of mechanical properties after implantation. These concerns, together with the present risks of the drug-eluting stents, namely, thrombosis and restenosis, require new materials to be studied. For this purpose, novel poly(polyol sebacate)-derived polymers are investigated as coatings for metallic stents. All pre-polymers reveal a low molecular weight between 3000 and 18 000 g mol-1 . The cured polymers range from flexible to more rigid, with E-modulus between 0.6 and 3.8 MPa. Their advantages include straightforward synthesis, biodegradability, easy processing through different scaffolding techniques, and easy transfer to industrial production. Furthermore, electrospraying and dip-coating procedures are used as proof-of-concept to create coatings on metallic stents. Biocompatibility tests using adipose stem cells lead to promising results for the use of these materials as coatings for metallic coronary stents.

Keywords: biocompatible; coatings; metallic stents; poly(polyol-sebacate)s.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / cytology
  • Adipose Tissue / metabolism*
  • Adult
  • Coated Materials, Biocompatible* / chemistry
  • Coated Materials, Biocompatible* / pharmacology
  • Drug-Eluting Stents*
  • Female
  • Humans
  • Materials Testing*
  • Middle Aged
  • Polymers* / chemistry
  • Polymers* / pharmacology
  • Stem Cells / cytology
  • Stem Cells / metabolism*

Substances

  • Coated Materials, Biocompatible
  • Polymers