Mechanical Stability of Flexible Graphene-Based Displays

ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22605-14. doi: 10.1021/acsami.6b05227. Epub 2016 Aug 17.

Abstract

The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.

Keywords: CVD graphene; Raman spectroscopy; mechanical performance; touch panel displays; wrinkles.