A Mathematical Model for Biocontrol of the Invasive Weed Fallopia japonica

Bull Math Biol. 2016 Aug;78(8):1678-702. doi: 10.1007/s11538-016-0195-8. Epub 2016 Aug 4.

Abstract

We propose a mathematical model for biocontrol of the invasive weed Fallopia japonica using one of its co-evolved natural enemies, the Japanese sap-sucking psyllid Aphalara itadori. This insect sucks the sap from the stems of the plant thereby weakening it. Its diet is highly specific to F. japonica. We consider a single isolated knotweed stand, the plant's size being described by time-dependent variables for total stem and rhizome biomass. It is the larvae of A. itadori that damage the plant most, so the insect population is described in terms of variables for the numbers of larvae and adults, using a stage-structured modelling approach. The dynamics of the model depends mainly on a parameter h, which measures how long it takes for an insect to handle (digest) one unit of F. japonica stem biomass. If h is too large, then the model does not have a positive equilibrium and the plant biomass and insect numbers both grow together without bound, though at a lower rate than if the insects were absent. If h is sufficiently small, then the model possesses a positive equilibrium which appears to be locally stable. The results based on our model imply that satisfactory long-term control of the knotweed F. japonica using the insect A. itadori is only possible if the insect is able to consume and digest knotweed biomass sufficiently quickly; if it cannot, then the insect can only slow down the growth which is still unbounded.

Keywords: Age-structure; Bio-control; Delay differential equation; Invasive weed.

MeSH terms

  • Animals
  • Biological Control Agents*
  • Biomass
  • Fallopia japonica* / growth & development
  • Fallopia japonica* / parasitology
  • Hemiptera / physiology
  • Mathematical Concepts
  • Models, Biological
  • Plant Weeds* / growth & development
  • Plant Weeds* / parasitology

Substances

  • Biological Control Agents