Effect of Cavitation Bubble Collapse on the Modification of Solids: Crystallization Aspects

Langmuir. 2016 Nov 1;32(43):11072-11085. doi: 10.1021/acs.langmuir.6b02842. Epub 2016 Aug 30.

Abstract

This review examines the concepts how cavitation bubble collapse affects crystalline structure, the crystallization of newly formed structures, and recrystallization. Although this subject can be discussed in a broad sense across the area of metastable crystallization, our main focus is discussing specific examples of the inorganic solids: metal, intermetallics, metal oxides, and silicon. First, the temperature up to which ultrasound heats solids is discussed. Cavitation-induced changes in the crystal size of intermetallic phases in binary AlNi (50 wt % of Ni) alloys allow an estimation of local temperatures on surfaces and in bulk material. The interplay between atomic solid-state diffusion and recrystallization during bubble collapses in heterogeneous systems is revealed. Furthermore, cavitation triggered red/ox processes at solid/liquid interfaces and their influence on recrystallization are discussed for copper aluminum nanocomposites, zinc, titanium, magnesium-based materials, and silicon. Cavitation-driven highly nonequilibrium conditions can affect the thermodynamics and kinetics of mesoscopic phase formation in heterogeneous systems and in many cases boost the macroscopic performance of composite materials, notably in catalytic alloy and photocatalytic semiconductor oxide properties, corrosion resistance, nanostructured surface biocompatibility, and optical properties.