Clinical Genomics: Challenges and Opportunities

Crit Rev Eukaryot Gene Expr. 2016;26(2):97-113. doi: 10.1615/CritRevEukaryotGeneExpr.2016015724.

Abstract

Next-generation sequencing (NGS) approaches are highly applicable to clinical studies. We review recent advances in sequencing technologies, as well as their benefits and tradeoffs, to provide an overview of clinical genomics from study design to computational analysis. Sequencing technologies enable genomic, transcriptomic, and epigenomic evaluations. Studies that use a combination of whole genome, exome, mRNA, and bisulfite sequencing are now feasible due to decreasing sequencing costs. Single-molecule sequencing increases read length, with the MinIONTM nanopore sequencer, which offers a uniquely portable option at a lower cost. Many of the published comparisons we review here address the challenges associated with different sequencing methods. Overall, NGS techniques, coupled with continually improving analysis algorithms, are useful for clinical studies in many realms, including cancer, chronic illness, and neurobiology. We, and others in the field, anticipate the clinical use of NGS approaches will continue to grow, especially as we shift into an era of precision medicine.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Epigenesis, Genetic*
  • Genome, Human*
  • Genomics / methods*
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Precision Medicine
  • Transcriptome*