Platelet concentrates: Balancing between efficacy and safety?

Presse Med. 2016 Jul-Aug;45(7-8 Pt 2):e289-98. doi: 10.1016/j.lpm.2016.06.020. Epub 2016 Jul 27.

Abstract

Platelet transfusions continue to be the mainstay to treat patients with quantitative and qualitative platelet disorders. Each year, about 10 millions of platelet transfusions are administered to patients worldwide with marked differences in usage between regions depending on socioeconomic development of the countries. Unfortunately, its use is associated to immune and non-immune side effects. Among the non-immune, bacterial contamination is still the major infectious risk. When bacterial culture methods are introduced for preventing bacterial septic reactions it has been found that this strategy reduce to one half the septic reactions, but do not eliminate completely that risk. To remove completely the risk, a new bacteria detection test at the time of issuance in the case of platelets stored for four or five days would be needed. Pathogen inactivation (PI) methods already in the market (based in the addition of amotosalen (A-L) or riboflavin (R-L) and the illumination with ultraviolet light) or under development (ultraviolet light C and agitation) have shown to be efficacious in the inactivation of bacteria and no cases of septic reactions associated to a pathogen-reduced product has been identified. However, it has been shown that PI technologies have measurable effects on platelet in vitro parameters and reduce the recovery and survival of treated platelets in vivo. Although these effects do not hamper the hemostatic capacity of treated platelets, an increased usage associated with PI technologies has been reported. This increase in utilization seems to be the toll to be paid if we want to completely eliminate the risk of bacterial sepsis in the recipients of platelet transfusion.

MeSH terms

  • Humans
  • Infection Control / methods
  • Infections / etiology
  • Platelet Transfusion* / adverse effects
  • Treatment Outcome