Identification and Application of Antitarget Activity Hotspots to Guide Compound Optimization

Mol Inform. 2011 Dec;30(11-12):996-1008. doi: 10.1002/minf.201100116. Epub 2011 Dec 1.

Abstract

The optimization of a lead structure to a development candidate often requires removal of undesirable antitarget activities. To this end, we have developed an approach to extract antitarget activity hotspots from larger databases and to transfer this knowledge onto novel chemical series. These antitarget activity hotspots will be captured as pairs of informative molecules, which are chemically closely related, but differ significantly in biological activity. We illustrate the application of antitarget activity hotspots as informative compound pairs for the optimization of side effects in lead structures for relevant antitargets in pharmaceutical research. The use for prospective design requires establishing a structural link between known antitarget hotspot pairs and a new lead structure: we employ 3D-based similarity comparison for this task. The entire workflow serves as idea generator in early optimization. The feasibility of this approach is demonstrated in several optimization problems related to hERG inhibition, and CYP3A4 inhibition. Several structural examples demonstrate the ability of the 3D-shape searching to identify related scaffolds and the usefulness of the antitarget hotspot information to guide optimization by modulating the undesirable antitarget activity. Such a concept based on the analysis of local similarities and the transfer to 3D-related series is especially promising in those cases, where the construction of antitarget QSAR models fails to detect local SAR trends for guiding the next optimization cycle.

Keywords: Activity hotspot; Antitarget; CYP3A4; Compound optimization; hERG.