Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots

PLoS One. 2016 Jul 28;11(7):e0159712. doi: 10.1371/journal.pone.0159712. eCollection 2016.

Abstract

The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

MeSH terms

  • Catharanthus / genetics
  • Catharanthus / metabolism*
  • Gene Silencing*
  • Plant Roots / metabolism*
  • Plants, Genetically Modified
  • RNA Interference
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Secologanin Tryptamine Alkaloids / metabolism*
  • Transcription, Genetic*

Substances

  • Repressor Proteins
  • Secologanin Tryptamine Alkaloids

Grants and funding

This work was supported by the National Science Foundation (NSF) CBET Award #1033889 to CLP and EJC and by the American Association of University Women (AAUW) Dissertation Fellowship to NFR. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.