Fluorescent Sensing of both Fe(III) and pH Based on 4-Phenyl-2-(2-Pyridyl)Thiazole and Construction of OR Logic Function

J Fluoresc. 2016 Sep;26(5):1653-7. doi: 10.1007/s10895-016-1855-7. Epub 2016 Jul 27.

Abstract

In the presented paper we investigated a 2-pyridylthiazole derivative, 4-phenyl-2-(2-pyridyl)thiazole (2-PTP), as the molecular fluorescent switches. It was firstly found that 2-PTP could perform a "turn-on" fluorescent sensing for Fe(III) with selectivity and reversibility. A 2:1 stoichiometry between 2-PTP and Fe(III) was determined according to the molar ratio method. The binding constant was evaluated as (1.90 ± 0.05) × 10(5) (L/mol)(2). The detection limit was found as 2.2 × 10(-7) M (S/N = 3). Secondly, 2-PTP also exhibited a pH-dependent dual-emission. The pK a(2-PTP-H(+)/2-PTP) value was then estimated as 2.0. To explain the identical emission at 479 nm of both the Fe(III) coordinated form and the protonated form of the ligand, we proposed a "locked" conformation. Finally, combining the two external stimuli as inputs, an OR logic gate was constructed using the fluorescent emission at 479 nm as the output channel.

Keywords: 2-pyridylthiazole; Fe(III); Fluorescence; OR logic gate; pH.