Structure, Function, and Inhibition of Staphylococcus aureus Heptaprenyl Diphosphate Synthase

ChemMedChem. 2016 Sep 6;11(17):1915-23. doi: 10.1002/cmdc.201600311. Epub 2016 Jul 26.

Abstract

We report the first structure of heptaprenyl diphosphate synthase from Staphylococcus aureus (SaHepPPS), together with an investigation of its mechanism of action and inhibition. The protein is involved in the formation of menaquinone, a key electron transporter in many bacteria, including pathogens. SaHepPPS consists of a "catalytic " subunit (SaHepPPS-2) having two "DDXXD" motifs and a "regulatory" subunit (SaHepPPS-1) that lacks these motifs. High concentrations of the substrates, isopentenyl diphosphate and farnesyl diphosphate, inhibit the enzyme, which is also potently inhibited by bisphosphonates. The most active inhibitors (Ki ∼200 nm) were N-alkyl analogues of zoledronate containing ∼C6 alkyl side chains. They were modestly active against S. aureus cell growth, and growth inhibition was partially "rescued" by the addition of menaquinone-7. Because SaHepPPS is essential for S. aureus cell growth, its structure is of interest in the context of the development of menaquinone biosynthesis inhibitors as potential antibiotic leads.

Keywords: Staphylococcus aureus; bisphosphonates; heptaprenyl diphosphate synthase; menaquinone biosynthesis; substrate-induced inhibition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkyl and Aryl Transferases / antagonists & inhibitors*
  • Alkyl and Aryl Transferases / metabolism
  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Staphylococcus aureus / cytology
  • Staphylococcus aureus / drug effects*
  • Staphylococcus aureus / enzymology
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Enzyme Inhibitors
  • Alkyl and Aryl Transferases
  • trans-hexaprenyltranstransferase