Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens

J Mol Biol. 2016 Aug 28;428(17):3387-98. doi: 10.1016/j.jmb.2016.07.007. Epub 2016 Jul 22.

Abstract

Autophagy is a conserved lysosomal recycling process, which maintains cellular homeostasis during stress and starvation conditions by degrading and recycling proteins, lipids, and carbohydrates, ultimately increasing nutrient availability in eukaryotes. An additional function of autophagy, termed xenophagy, is to detect, capture, and destroy invading microorganisms, such as viruses, bacteria, and protozoa, providing autophagy with a role in innate immunity. Many intracellular pathogens have, however, developed mechanisms to avoid xenophagy and have evolved strategies to take advantage of select autophagic processes to undergo their intracellular life cycle. This review article will discuss the molecular mechanisms used by the intracellular bacterial pathogens Francisella spp. and Brucella spp. to manipulate components of the autophagic pathway, promoting cytosolic growth in the case of Francisella spp. and facilitating cellular egress and cell-to-cell spread in the case of Brucella spp. These examples highlight how successful, highly infectious bacterial pathogens avoid or subvert host autophagy mechanisms normally employed to maintain eukaryotic homeostasis.

Keywords: O-antigen; bacterial secretion system; cellular egress; infection; nutrient acquisition.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Autophagy*
  • Brucella / immunology*
  • Brucella / pathogenicity*
  • Francisella / immunology*
  • Francisella / pathogenicity*
  • Host-Pathogen Interactions*
  • Humans
  • Immune Evasion*