Design, synthesis and excellent third-order NLO properties of two new polyoxometalates constructed from Keggin polyanions bonded by a solvent molecule

Dalton Trans. 2016 Aug 9;45(32):12717-22. doi: 10.1039/c6dt02320g.

Abstract

Two new monosubstituted Keggin structural polyoxometalates [H5PMo11O39Zn(C5H5N)]·(C5H5N)5·H2O (1) and [H5PW11O39Co(C5H5N)]·(C5H5N)2·(C6H8N)2·1.5CH3OH (2) have been successfully synthesized under hydrothermal conditions. Structural analysis indicates that the polyoxoanion of compound 1 is a solvent molecule-bonded zinc-monosubstituted Keggin structural cluster, [PMo11O39Zn(C5H5N)](5-), while the polyoxoanion of compound 2 is a cobalt-monosubstituted phosphotungstate polyanion bonded with one pendant pyridine molecule. Both 1 and 2 show 3D supramolecular interpenetrating structures constructed of inorganic polyanion layers and organic layers. Very interestingly, compounds 1 and 2 exhibit excellent third-order NLO properties, and the TPA cross section σ of 1 and 2 is 2571.3 GM and 2876.3 GM, respectively.