Near Infrared Quantum Cutting of Tb3+-Yb3+ Co-Doped CeF3 Nanophosphors

J Nanosci Nanotechnol. 2016 Apr;16(4):3577-82. doi: 10.1166/jnn.2016.11880.

Abstract

In this paper, Tb3+-Yb3+ Co-doped CeF3 nanophosphors were synthesized using the microwave-assisted heating hydrothermal method (M-H). The excitation and emission spectra of the samples at room temperature show that the samples absorb ultraviolet light from 250 nm to 280 nm, and emit light at 300 nm. This corresponds to the transitions from 5D to 4F of Ce3+, 480 nm, 540 nm, 583 nm, 620 nm which correspond to the transitions from 5D4 to 7F6,5,4,3 of Tb3+, 973 nm which corresponds to the transitions from 2F5/2-2F7/2 of Yb3+. In the emission spectra, it is clear that the emission intensity of Ce3+ and Tb3+ decreases, and Yb3+ increases with increasing Yb3+. This suggests that energy transfer from Ce3+ to Yb3+, and Ce3+ to Tb3+ to Yb3+ may occur. In the near infrared emission area, it is noted that a distinct emission centered at 973 nm was observed under 260 nm excitation. This is due to transitions among the different Stark levels of 2FJ(J=5/2,7/2) Yb3+ ions. This also suggests an energy transfer from Ce3+ ions to Tb3+ and then to Yb3+. The energy transfers from Tb3+-Yb3+ Co-doped CeF3 nanophosphors, which lead to intense NIR emissions at 900-1050 nm, match the energy of Si band gaps of Si-based solar cells. Therefore, these kinds of materials are promising candidates for applications that require modifying if solar spectrums and enhancement of conversion efficiency of Si-based solar cells.

Publication types

  • Research Support, Non-U.S. Gov't