Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt)

J Hazard Mater. 2016 Nov 15:318:396-406. doi: 10.1016/j.jhazmat.2016.07.011. Epub 2016 Jul 6.

Abstract

The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

Keywords: Acid rain; Adsorption; Buffering; Mine tailings; Montmorillonite.