Fusaproliferin, Terpestacin and Their Derivatives Display Variable Allelopathic Activity Against Some Ascomycetous Fungi

Chem Biodivers. 2016 Nov;13(11):1593-1600. doi: 10.1002/cbdv.201600145. Epub 2016 Nov 7.

Abstract

Herbivorous mammal dung supports a large variety of fimicolous fungi able to produce different bioactive secondary metabolites to compete with other organisms. Recently, the organic extracts of the Solid State Fermentation (SSF) cultures of Cleistothelebolus nipigonensis and Neogymnomyces virgineus, showing strong antifungal activity, were preliminarily investigated. This manuscript reports the isolation of the main metabolites identified, using spectroscopic and optical methods, as fusaproliferin (1) and terpestacin (2). Furthermore, some key hemisynthetic derivatives were prepared and their antifungal activity was tested against the same fungi previously reported to be affected by the organic extracts obtained from SSF. These metabolites and their derivatives resulted able to reduce the growth of Alternaria brassicicola, Botrytis cinerea and Fusarium graminearum in a variable extent strongly dependent from chemical modifications and test fungi. The hydroxy enolic group at C(17) appeared to be a structural feature important to impart activity. This study represents the first report of these secondary metabolites produced by C. nipigonensis and N. virgineus.

Keywords: Cleistothelebolus nipigonensis; Neogymnomyces virgineus; Fungal growth reduction; Fusaproliferin; Terpestacin.

MeSH terms

  • Allelopathy / drug effects
  • Alternaria / drug effects*
  • Alternaria / growth & development
  • Antifungal Agents / chemistry
  • Antifungal Agents / isolation & purification
  • Antifungal Agents / pharmacology*
  • Botrytis / drug effects*
  • Botrytis / growth & development
  • Bridged Bicyclo Compounds / chemistry
  • Bridged Bicyclo Compounds / isolation & purification
  • Bridged Bicyclo Compounds / pharmacology
  • Dose-Response Relationship, Drug
  • Fusarium / drug effects*
  • Fusarium / growth & development
  • Microbial Sensitivity Tests
  • Molecular Conformation
  • Structure-Activity Relationship
  • Terpenes / chemistry
  • Terpenes / isolation & purification
  • Terpenes / pharmacology*

Substances

  • Antifungal Agents
  • Bridged Bicyclo Compounds
  • Terpenes
  • fusaproliferin
  • terpestacin