Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate

Appl Microbiol Biotechnol. 2016 Sep;100(17):7777-85. doi: 10.1007/s00253-016-7724-0. Epub 2016 Jul 22.

Abstract

Eighteen strains of Escherichia coli were compared for maximum specific growth rate (μ MAX) on 85 mM acetate as the sole carbon source. The C strain ATCC8739 had the greatest growth rate (0.41 h(-1)) while SCS-1 had the slowest growth rate (0.15 h(-1)). Transcriptional analysis of three of the strains (ATCC8739, BL21, SMS-3-5) was conducted to elucidate why ATCC8739 had the greatest maximum growth rate. Seventy-one genes were upregulated 2-fold or greater in ATCC8739, while 128 genes were downregulated 2-fold or greater in ATCC8739 compared to BL21 and SMS-3-5. To generate a strain that could grow more quickly on acetate, ATCC8739 was cultured in a chemostat using a progressively increasing dilution rate. When the dilution rate reached 0.50 h(-1), three isolated colonies each grew faster than ATCC8739 on 85 mM acetate, with MEC136 growing the fastest with a growth rate of 0.51 h(-1), about 25 % greater than ATCC8739. Transcriptional analysis of MEC136 showed that eight genes were downregulated 2-fold or greater and one gene was upregulated 2-fold or greater compared to ATCC8739. Genomic sequencing revealed that MEC136 contained a single mutation, causing a serine to proline change in amino acid 266 of RpoA, the α subunit of the RNA polymerase core enzyme. The 260-270 amino acid region of RpoA has been shown to be a key region of the protein that affects the interaction of the α subunit of the RNA polymerase core enzyme with several global transcriptional activators, such as CRP and FNR.

Keywords: Acetic acid; Adaptive evolution; Chemostat; Growth rate.

MeSH terms

  • Acetates / metabolism*
  • Adaptation, Physiological
  • Biofuels / microbiology
  • DNA-Directed RNA Polymerases / genetics
  • Escherichia coli / genetics
  • Escherichia coli / growth & development*
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics*
  • Mutation*

Substances

  • Acetates
  • Biofuels
  • Escherichia coli Proteins
  • DNA-Directed RNA Polymerases
  • RNA polymerase alpha subunit