A newly developed dispersal metric indicates the succession of benthic invertebrates in restored rivers

Sci Total Environ. 2016 Nov 1:569-570:1570-1578. doi: 10.1016/j.scitotenv.2016.06.251. Epub 2016 Jul 18.

Abstract

Dispersal capacity plays a fundamental role in the riverine benthic invertebrate colonization of new habitats that emerges following flash floods or restoration. However, an appropriate measure of dispersal capacity for benthic invertebrates is still lacking. The dispersal of benthic invertebrates occurs mainly during the aquatic (larval) and aerial (adult) life stages, and the dispersal of each stage can be further subdivided into active and passive modes. Based on these four possible dispersal modes, we first developed a metric (which is very similar to the well-known and widely used saprobic index) to estimate the dispersal capacity for 802 benthic invertebrate taxa by incorporating a weight for each mode. Second, we tested this metric using benthic invertebrate community data from a) 23 large restored river sites with substantial improvements of river bottom habitats dating back 1 to 10years, b) 23 unrestored sites very close to the restored sites, and c) 298 adjacent surrounding sites (mean±standard deviation: 13.0±9.5 per site) within a distance of up to 5km for each restored site in the low mountain and lowland areas of Germany. We hypothesize that our metric will reflect the temporal succession process of benthic invertebrate communities colonizing the restored sites, whereas no temporal changes are expected in the unrestored and surrounding sites. By applying our metric to these three river treatment categories, we found that the average dispersal capacity of benthic invertebrate communities in the restored sites significantly decreased in the early years following restoration, whereas there were no changes in either the unrestored or the surrounding sites. After all taxa had been divided into quartiles representing weak to strong dispersers, this pattern became even more obvious; strong dispersers colonized the restored sites during the first year after restoration and then significantly decreased over time, whereas weak dispersers continued to increase. The successful application of our metric to river restoration might be promising in further applications of this metric, for example, in analyzing metacommunity structure or community's recovery from extreme events such as floods, droughts or catastrophic pollution episodes.

Keywords: Community succession; Integrated dispersal metric; Macroinvertebrate; River restoration; Weight approach.

MeSH terms

  • Animal Distribution*
  • Animals
  • Biodiversity
  • Environmental Restoration and Remediation / methods*
  • Germany
  • Invertebrates* / physiology
  • Rivers*