Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

Biochem Biophys Res Commun. 2016 Sep 9;478(1):234-240. doi: 10.1016/j.bbrc.2016.07.062. Epub 2016 Jul 15.

Abstract

The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response.

Keywords: PARP; Particle radiation; Proton beam; Proton therapy; Radiosensitizer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Apoptosis / drug effects
  • Apoptosis / radiation effects
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Dose-Response Relationship, Drug
  • Dose-Response Relationship, Radiation
  • Humans
  • Neoplasms, Experimental / metabolism*
  • Neoplasms, Experimental / pathology
  • Neoplasms, Experimental / radiotherapy*
  • Phthalazines / administration & dosage
  • Piperazines / administration & dosage
  • Poly(ADP-ribose) Polymerase Inhibitors / administration & dosage*
  • Proton Therapy / methods*
  • Radiation Tolerance / drug effects*
  • Radiation-Sensitizing Agents / administration & dosage*
  • Radiotherapy Dosage
  • Treatment Outcome

Substances

  • Phthalazines
  • Piperazines
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Radiation-Sensitizing Agents
  • olaparib