Highly Efficient, Reproducible, Uniform (CH3 NH3 )PbI3 Layer by Processing Additive Dripping for Solution-Processed Planar Heterojunction Perovskite Solar Cells

Chem Asian J. 2016 Sep 6;11(17):2399-405. doi: 10.1002/asia.201600722. Epub 2016 Aug 8.

Abstract

A processing additive dripping (PAD) approach to forming highly efficient (CH3 NH3 )PbI3 (MAPbI3 ) perovskite layers was investigated. A MAPbI3 (CB/DIO) perovskite film fabricated by this approach, which included briefly dripping chlorobenzene incorporating a small amount of diiodooctane (DIO) during casting of a MAPbI3 perovskite precursor dissolved in dimethylformamide, exhibited superior smooth, uniform morphologies with high crystallinity and large grains and revealed completely homogeneous surface coverage. The surface coverage and morphology of the substrate significantly affected the photovoltaic performance of planar heterojunction (PHJ) perovskite solar cells (PrSCs), resulting in a power conversion efficiency of 11.45 % with high open-circuit voltage of 0.91 V and the highest fill factor of 80.87 %. Moreover, the PAD approach could effectively provide efficient MAPbI3 (CB/DIO) perovskite layers for highly efficient, reproducible, uniform PHJ PrSC devices without performance loss or variation even over larger active areas.

Keywords: organometal halide; perovskite solar cell; planar heterojunction; processing additive; solvent dripping.