High-Q mid-infrared thermal emitters operating with high power-utilization efficiency

Opt Express. 2016 Jun 27;24(13):15101-9. doi: 10.1364/OE.24.015101.

Abstract

We demonstrate a single-mode high-Q (Q>100) mid-infrared thermal emitter operating with high power-utilization efficiency. The emitter consists of a rod-type photonic crystal (PC) slab interacting with GaAs/AlGaAs multiple quantum wells (MQWs), a GaAs substrate frame supporting the PC slab, and electric wires for Joule heating of the device. We carefully design the structure of the PC slab and the supporting frame/wires to minimize unwanted thermal losses and realize narrowband thermal emission having a peak intensity, under a given electrical input power, that is an order of magnitude higher than that of a reference blackbody emitter due to the efficient increase of the device temperature.