Reducing effects of aberration in 3D fluorescence imaging using wavefront coding with a radially symmetric phase mask

Opt Express. 2016 Jun 13;24(12):12905-21. doi: 10.1364/OE.24.012905.

Abstract

In this work, a wavefront encoded (WFE) imaging system built using a squared cubic phase mask, designed to reduce the sensitivity of the imaging system to spherical aberration, is investigated. The proposed system allows the use of a space-invariant image restoration algorithm, which uses a single PSF, to restore intensity distribution in images suffering aberration, such as sample-induced aberration in thick tissue. This provides a computational advantage over depth-variant image restoration algorithms developed previously to address this aberration. Simulated PSFs of the proposed system are shown to change up to 25% compared to the 0 µm depth PSF (quantified by the structural similarity index) over a 100 µm depth range, while the conventional system PSFs change up to 84%. Results from experimental test-sample images show that restoration error is reduced by 29% when the proposed WFE system is used instead of the conventional system over a 30 µm depth range.