Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry

Opt Express. 2016 Jun 13;24(12):12776-87. doi: 10.1364/OE.24.012776.

Abstract

In simultaneous phase-shifting dual-wavelength interferometry, by matching both the phase-shifting period number and the fringe number in interferogram of two wavelengths to the integers, the phase with high accuracy can be retrieved through combining the principle component analysis (PCA) and least-squares iterative algorithm (LSIA). First, by using the approximate ratio of two wavelengths, we can match both the temporal phase-shifting period number and the spatial fringe number in interferogram of two wavelengths to the integers. Second, using above temporal and spatial hybrid matching condition, we can achieve accurate phase shifts of single-wavelength of phase-shifting interferograms through using PCA algorithm. Third, using above phase shifts to perform the iterative calculation with the LSIA method, the wrapped phases of single-wavelength can be determined. Both simulation calculation and experimental research demonstrate that by using the temporal and spatial hybrid matching condition, the PCA + LSIA based phase retrieval method possesses significant advantages in accuracy, stability and processing time.