Carbon-Encapsulated Hollow Porous Vanadium-Oxide Nanofibers for Improved Lithium Storage Properties

ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19466-74. doi: 10.1021/acsami.6b05307. Epub 2016 Jul 21.

Abstract

Carbon-encapsulated hollow porous vanadium-oxide (C/HPV2O5) nanofibers have been fabricated using electrospinning and postcalcination. By optimized postcalcination of vanadium-nitride and carbon-nanofiber composites at 400 °C for 30 min, we synthesized a unique architecture electrode with interior void spaces and well-defined pores as well as a uniform carbon layer on the V2O5 nanofiber surface. The optimized C/HPV2O5 electrode postcalcined at 400 °C for 30 min showed improved lithium storage properties with high specific discharge capacities, excellent cycling durability (241 mA h g(-1) at 100 cycles), and improved high-rate performance (155 mA h g(-1) at 1000 mA g(-1)), which is the highest performance in comparison with previously reported V2O5-based cathode materials. The improved electrochemical feature is due to the attractive properties of the carbon-encapsulated hollow porous structure: (I) excellent cycling durability with high specific capacity relative to the adoption of carbon encapsulation as a physical buffer layer and the effective accommodation of volume changes due to the hollow porous structure, (II) improved high-rate performance because of a shorter Li-ion diffusion pathway resulting from interior void spaces and well-defined pores at the surface. This unique electrode structure can potentially provide new cathode materials for high-performance lithium-ion batteries.

Keywords: Li-ion battery; carbon encapsulation; cathode; hollow porous structure; vanadium oxide.