[Terahertz and Infrared Spectroscopic Investigation of Cellulose]

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Mar;36(3):681-5.
[Article in Chinese]

Abstract

To investigate the Terahertz's application prospect, corn, wheat husk and reed were used to detect their Terahertz Time Domain Spectroscopy, and be compared with that of cellulose powder. The experimental results show that all of their absorption peaks exist at 1.75, 1.62, 1.1, and 0.7 THz. Absorption intensity of cellulose powder, corn, wheat husk and reed were compared in some frequencies points. It finds that corn, wheat husk and reed have higher absorption intensity than cellulose powder in early frequency domain. However, absorption intensity of cellulose powder is the strongest at 1.62 THz. Cellulose content in corn, wheat husk and reed were detected by using the method of chemical analysis. The peaks of absorption coefficient are related to their cellulose content at this frequency. It shows that plant cellulose occur lattice vibration in the frequency. Deformation, bending, flexing, and other changes appear to their functional keys. Quantum chemical calculation was carried out by using density functional theory to cellulose and the structure diagram of cellulose molecular formula was obtained. It also finds some absorption peaks exist at 0.7, 1.1, and 1.75 THz. Characterization of cellulose clusters mainly includes CH2, OH, CH, and so on. Glucose hydroxyl radical on the ring is active in the cellulose chain. Where hydroxyl related chemical reaction can occur, Hydroxyl can also be integrated into the intermolecular and intramolecular hydrogen bond. Terahertz wave can promote hydrogen bond vibration. This kind of vibration is weak in the intermolecular interaction. The vibration and rotating happen in dipole transition. The crystal lattice rotates and is absorptive in low frequency, and large molecular skeleton vibrates. All of them can show different intensity and position of the absorption peak in the terahertz band. Corn and cellulose were analyzed by infrared spectrum. The reverse and vibration mode of cellulose was discussed. The absorption peak is basically in line with its theoretical calculating result. It is feasible that Terahertz Time Domain Spectroscopy can detect cellulose, and it provides a new method for the detection and judgement of cellulose in plants.

MeSH terms

  • Cellulose / chemistry*
  • Hydrogen Bonding
  • Spectrophotometry, Infrared*
  • Terahertz Spectroscopy*
  • Triticum / chemistry
  • Vibration
  • Zea mays / chemistry

Substances

  • Cellulose