Cation-Selective and Anion-Controlled Fluorogenic Behaviors of a Benzothiazole-Attached Macrocycle That Correlate with Structural Coordination Modes

Inorg Chem. 2016 Aug 1;55(15):7448-56. doi: 10.1021/acs.inorgchem.6b00690. Epub 2016 Jul 8.

Abstract

We report how the metal cation and its counteranions cooperate in the complexation-based macrocyclic chemosensor to monitor the target metal ion via the specific coordination modes. The benzothiazolyl group bearing NO2S2-macrocycle L was synthesized, and its mercury(II) selectivity (for perchlorate salt) as a dual-probe channel (UV-vis and fluorescence) chemosensor exhibiting the largest blue shift and the fluorescence turn-off was observed. In the mercury(II) sensing with different anions, except ClO4(-) and NO3(-), no responses for mercury(II) were observed with other anions such as Cl(-), Br(-), I(-), SCN(-), OAc(-), and SO4(2-). A crystallographic approach for the mononuclear mercury(II) perchlorate complex [Hg(L)(ClO4)2]·0.67CH2Cl2 (1) and polymeric mercury(II) iodide complex [Hg(L)I2]n (2) revealed that the observed anion-controlled mercury(II) sensing in the fluorescence mainly stems from the endo- and exocoordination modes, depending on the anion coordinating ability, which induces either the Hg-Ntert bond formation or not. The detailed complexation process with mercury(II) perchlorate associated with the cation sensing was also monitored with the titration methods by UV-vis, fluorescence spectroscopy, and cold-spray ionization mass spectrometry.