A Ni(iii) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C-H fluoroalkylation

Dalton Trans. 2016 Jul 26;45(30):11976-82. doi: 10.1039/c6dt01492e.

Abstract

We have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions. The catalyst content is only 1% with respect to the substrates under electrochemical regeneration conditions. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times. The results emphasize immobilization on the silica support and the electrochemical regeneration of Ni(III) complexes as a facile route for developing an efficient nanocatalyst for oxidative functionalization.