[Dynamic behavior of aldicarb and its metabolites in cabbage by liquid chromatography-tandem mass spectrometry]

Se Pu. 2016 Feb;34(2):165-9. doi: 10.3724/sp.j.1123.2015.08018.
[Article in Chinese]

Abstract

A liquid chromatography-tandem mass spectrometry ( LC-MS/MS ) method was developed for the study of dynamic behavior of aldicarb and its metabolite residues in cabbage. Aldicarb was applied onto cultivated cabbages. The pesticides concentrations were measured periodically (between application and harvest) , and modeled to illustrate the dynamic behavior. The results showed that the liner ranges of aldicarb and its metabolites were from 0. 005 to 0. 2 mg/L, and the recoveries ranged from 78. 9% to 108. 5% with the relative standard deviations of 2. 03%- 8. 91% (n = 8). The aldicarb in cabbage increased at first with the first-order kinetic equation model of c = 0. 020(0.136t) with the correlation coefficient (r2) of 0. 888, and then decreased with the equation of c = 0. 65e(-059t) with the r2 of 0. 979 and the half-life of 29. 1 d. The reducing processes of aldicarb-sulfone and aldicarb-sulfoxide both matched the first-order kinetic equations (c = 23. 4e(-0.044t) and c = 4. 54e(-0.027t) with r2 of 0. 916 and 0. 972 respectively. To meet the limitation requirement of 0. 01 mg/kg, 70. 7, 226. 6 and 176. 3 d were respectively necessary for aldicarb, aldicarb-sulfone and aldicarb-sulfoxide. Final residues of aldicarb-sulfone and aldicarb-sulfoxide were still more than the limitation requirements, indicating that aldicarb should not be used in vegetables of growth cycle shorter than 120 d. This study provided theoretical basis for dynamic behavior of aldicarb residue and its safe use in vegetables.

MeSH terms

  • Aldicarb / chemistry*
  • Brassica / metabolism*
  • Chromatography, Liquid
  • Food Analysis
  • Insecticides / chemistry*
  • Pesticide Residues / analysis*
  • Tandem Mass Spectrometry

Substances

  • Insecticides
  • Pesticide Residues
  • Aldicarb