Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

Nat Mater. 2016 Aug;15(8):889-95. doi: 10.1038/nmat4683. Epub 2016 Jul 4.

Abstract

After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.