Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration

Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7711-6. doi: 10.1073/pnas.1608135113. Epub 2016 Jun 27.

Abstract

The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

Keywords: amphiphilic Janus nanosheets; climbing film; enhanced oil recovery; interfacial film; nanofluid flooding.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't