Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor

Biochem Pharmacol. 2016 Sep 1:115:64-76. doi: 10.1016/j.bcp.2016.06.013. Epub 2016 Jun 23.

Abstract

Bombesin-receptor-subtype-3 (BB3 receptor) is a G-protein-coupled-orphan-receptor classified in the mammalian Bombesin-family because of high homology to gastrin-releasing peptide (BB2 receptor)/neuromedin-B receptors (BB1 receptor). There is increased interest in BB3 receptor because studies primarily from knockout-mice suggest it plays roles in energy/glucose metabolism, insulin-secretion, as well as motility and tumor-growth. Investigations into its roles in physiological/pathophysiological processes are limited because of lack of selective ligands. Recently, a selective, peptide-antagonist, Bantag-1, was described. However, because BB3 receptor has low-affinity for all natural, Bn-related peptides, little is known of the molecular basis of its high-affinity/selectivity. This was systematically investigated in this study for Bantag-1 using a chimeric-approach making both Bantag-1 loss-/gain-of-affinity-chimeras, by exchanging extracellular (EC) domains of BB3/BB2 receptor, and using site-directed-mutagenesis. Receptors were transiently expressed and affinities determined by binding studies. Bantag-1 had >5000-fold selectivity for BB3 receptor over BB2/BB1 receptors and substitution of the first EC-domain (EC1) in loss-/gain-of affinity-chimeras greatly affected affinity. Mutagenesis of each amino acid difference in EC1 between BB3 receptor/BB2 receptor showed replacement of His(107) in BB3 receptor by Lys(107) (H107K-BB3 receptor-mutant) from BB2 receptor, decreased affinity 60-fold, and three replacements [H107K, E11D, G112R] decreased affinity 500-fold. Mutagenesis in EC1's surrounding transmembrane-regions (TMs) demonstrated TM2 differences were not important, but R127Q in TM3 alone decreased affinity 400-fold. Additional mutants in EC1/TM3 explored the molecular basis for these changes demonstrated in EC1, particularly important is the presence of aromatic-interactions by His(107), rather than hydrogen-bonding or charge-charge interactions, for determining Bantag-1 high affinity/selectivity. In regard to Arg(127) in TM3, both hydrogen-bonding and charge-charge interactions contribute to the high-affinity/selectivity for Bantag-1.

Keywords: Bombesin; Gastrin-releasing peptide; Neuromedin B; Obesity; Satiety.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • CHO Cells
  • Cricetulus
  • Humans
  • Mice
  • Mutagenesis
  • Peptides / antagonists & inhibitors*
  • Peptides / metabolism
  • Protein Binding
  • Receptors, Bombesin / genetics
  • Receptors, Bombesin / metabolism*
  • Recombinant Fusion Proteins / metabolism

Substances

  • Peptides
  • Receptors, Bombesin
  • Recombinant Fusion Proteins
  • bantag-1
  • bombesin receptor subtype 3