Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk

J Ind Microbiol Biotechnol. 2016 Sep;43(9):1237-47. doi: 10.1007/s10295-016-1794-y. Epub 2016 Jun 24.

Abstract

Staphylococcus aureus is a major food-borne pathogen due to the production of enterotoxin and is particularly prevalent in contaminated milk and dairy products. The lactic acid bacteria (LAB) are widely used as biocontrol agents in fermented foods which can inhibit pathogenic flora. In our work, we investigated the influence of three strains of LAB (Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans) on the relative expression of three enterotoxin genes (sea, sec, sell) and eight virulence and/or regulatory genes (sarA, saeS, codY, srrA, rot, hld/RNAIII, agrA/RNAII, sigB) in two S. aureus strains (MW2 and Sa1612) in TSB and reduced-fat milk (1.5 %) at 30 °C over a 24-h period. The tested LAB and S. aureus strains proved to be mutually non-competitive or only slightly competitive during co-cultivation. In addition, under the above-mentioned conditions, differential gene expression between the S. aureus MW2 and Sa1612 strains was well documented. S. aureus growth was changed in mixed culture with LAB; however, its effect on the repression of sea and sec expression correlated with production of these virulence factors. In comparison, the presence of LAB strains generally inhibited the expression of sec, sell, sarA, seaS, agrA/RNAII and hld/RNAIII genes. The effect of LAB strains presence on the expression of sea, codY, srrA, rot and sigB genes was medium, time, LAB and S. aureus strain specific. SEA and SEC production was significantly reduced in milk compared to TSB in pure culture. After the 24-h cultivation, S. aureus MW2 and Sa1612 SEC production was 187 and 331 times lower in milk compared to TSB, respectively (0.07 and 0.39 ng/mL in milk, versus 13.1 and 129.2 ng/mL in TSB, respectively). At the same time S. aureus MW2 and Sa1612 SEA production was 77 and 68 times lower in milk compared to TSB, respectively (0.99 and 0.17 ng/mL in milk, versus 76.4 and 11.5 ng/mL in TSB, respectively). This study has revealed new insights into the interaction between S. aureus and LAB (L. plantarum, S. thermophilus, E. durans) on the level of the expression and/or production of S. aureus enterotoxins, regulatory and virulence genes in different media, including milk. This study provides data which may improve the quality of food production.

Keywords: ELISA; RT-qPCR; SEA; SEC; Staphylococcus aureus; Virulence genes.

MeSH terms

  • Animals
  • Coculture Techniques
  • Culture Media
  • Enterococcus / physiology
  • Enterotoxins / biosynthesis
  • Enterotoxins / genetics
  • Food Microbiology
  • Genes, Regulator
  • Lactobacillus plantarum / physiology
  • Microbial Interactions
  • Milk*
  • Staphylococcus aureus / genetics*
  • Staphylococcus aureus / growth & development
  • Staphylococcus aureus / metabolism*
  • Staphylococcus aureus / pathogenicity
  • Streptococcus thermophilus / physiology
  • Transcriptome
  • Virulence Factors / genetics

Substances

  • Culture Media
  • Enterotoxins
  • Virulence Factors