Clinical Evaluation of Zero-Echo-Time Attenuation Correction for Brain 18F-FDG PET/MRI: Comparison with Atlas Attenuation Correction

J Nucl Med. 2016 Dec;57(12):1927-1932. doi: 10.2967/jnumed.116.175398. Epub 2016 Jun 23.

Abstract

Accurate attenuation correction (AC) on PET/MR is still challenging. The purpose of this study was to evaluate the clinical feasibility of AC based on fast zero-echo-time (ZTE) MRI by comparing it with the default atlas-based AC on a clinical PET/MR scanner.

Methods: We recruited 10 patients with malignant diseases not located on the brain. In all patients, a clinically indicated whole-body 18F-FDG PET/CT scan was acquired. In addition, a head PET/MR scan was obtained voluntarily. For each patient, 2 AC maps were generated from the MR images. One was atlas-AC, derived from T1-weighted liver acquisition with volume acceleration flex images (clinical standard). The other was ZTE-AC, derived from proton-density-weighted ZTE images by applying tissue segmentation and assigning continuous attenuation values to the bone. The AC map generated by PET/CT was used as a silver standard. On the basis of each AC map, PET images were reconstructed from identical raw data on the PET/MR scanner. All PET images were normalized to the SPM5 PET template. After that, these images were qualified visually and quantified in 67 volumes of interest (VOIs; automated anatomic labeling, atlas). Relative differences and absolute relative differences between PET images based on each AC were calculated. 18F-FDG uptake in all 670 VOIs and generalized merged VOIs were compared using a paired t test.

Results: Qualitative analysis shows that ZTE-AC was robust to patient variability. Nevertheless, misclassification of air and bone in mastoid and nasal areas led to the overestimation of PET in the temporal lobe and cerebellum (%diff of ZTE-AC, 2.46% ± 1.19% and 3.31% ± 1.70%, respectively). The |%diff| of all 670 VOIs on ZTE was improved by approximately 25% compared with atlas-AC (ZTE-AC vs. atlas-AC, 1.77% ± 1.41% vs. 2.44% ± 1.63%, P < 0.01). In 2 of 7 generalized VOIs, |%diff| on ZTE-AC was significantly smaller than atlas-AC (ZTE-AC vs. atlas-AC: insula and cingulate, 1.06% ± 0.67% vs. 2.22% ± 1.10%, P < 0.01; central structure, 1.03% ± 0.99% vs. 2.54% ± 1.20%, P < 0.05).

Conclusion: The ZTE-AC could provide more accurate AC than clinical atlas-AC by improving the estimation of head-skull attenuation. The misclassification in mastoid and nasal areas must be addressed to prevent the overestimation of PET in regions near the skull base.

Keywords: 18F-FDG; PET/MR; ZTE; atlas-based; attenuation correction; brain.

Publication types

  • Comparative Study
  • Evaluation Study

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Brain / diagnostic imaging*
  • Feasibility Studies
  • Female
  • Fluorodeoxyglucose F18*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Kinetics
  • Magnetic Resonance Imaging*
  • Male
  • Middle Aged
  • Multimodal Imaging*
  • Positron Emission Tomography Computed Tomography*

Substances

  • Fluorodeoxyglucose F18