Phosphodiesterase 11A (PDE11A), Enriched in Ventral Hippocampus Neurons, is Required for Consolidation of Social but not Nonsocial Memories in Mice

Neuropsychopharmacology. 2016 Nov;41(12):2920-2931. doi: 10.1038/npp.2016.106. Epub 2016 Jun 24.

Abstract

The capacity to form long-lasting social memories is critical to our health and survival. cAMP signaling in the ventral hippocampal formation (VHIPP) appears to be required for social memory formation, but the phosphodiesterase (PDE) involved remains unknown. Previously, we showed that PDE11A, which degrades cAMP and cGMP, is preferentially expressed in CA1 and subiculum of the VHIPP. Here, we determine whether PDE11A is expressed in neurons where it could directly influence synaptic plasticity and whether expression is required for the consolidation and/or retrieval of social memories. In CA1, and possibly CA2, PDE11A4 is expressed throughout neuronal cell bodies, dendrites (stratum radiatum), and axons (fimbria), but not astrocytes. Unlike PDE2A, PDE9A, or PDE10A, PDE11A4 expression begins very low at postnatal day 7 (P7) and dramatically increases until P28, at which time it stabilizes to young adult levels. This expression pattern is consistent with the fact that PDE11A is required for social long-term memory (LTM) formation during adolescence and adulthood. Male and female PDE11 knockout (KO) mice show normal short-term memory (STM) for social odor recognition (SOR) and social transmission of food preference (STFP), but no LTM 24 h post training. Importantly, PDE11A KO mice show normal LTM for nonsocial odor recognition. Deletion of PDE11A may impair memory consolidation by impairing requisite protein translation in the VHIPP. Relative to WT littermates, PDE11A KO mice show reduced expression of RSK2 and lowered phosphorylation of S6 (pS6-235/236). Together, these data suggest PDE11A is selectively required for the proper consolidation of recognition and associative social memories.

MeSH terms

  • 3',5'-Cyclic-GMP Phosphodiesterases / genetics
  • 3',5'-Cyclic-GMP Phosphodiesterases / metabolism*
  • Animals
  • Animals, Newborn
  • Food Preferences
  • Hippocampus / cytology*
  • Memory / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neurons / cytology
  • Neurons / physiology*
  • Odorants
  • RNA, Messenger / metabolism
  • Recognition, Psychology
  • Ribosomal Protein S6 / metabolism
  • Social Behavior*
  • Time Factors

Substances

  • RNA, Messenger
  • Ribosomal Protein S6
  • 3',5'-Cyclic-GMP Phosphodiesterases
  • Pde11a protein, mouse