Expanded Porous Metal-Organic Frameworks by SCSC: Organic Building Units Modifying and Enhanced Gas-Adsorption Properties

Inorg Chem. 2016 Jul 5;55(13):6420-5. doi: 10.1021/acs.inorgchem.6b00278. Epub 2016 Jun 17.

Abstract

Two amino-functional copper metal-organic frameworks of formula [Cu3(ATTCA)2(H2O)3]·2DMF·11H2O·12EtOH (1) (H3ATTCA = 2-amino-[1,1:3,1-terphenyl]-4,4,5-tricarboxylic acid, pyz = pyrazine, DMF = dimethylformamide) and [Cu3(ATTCA)2(pyz)(H2O)]·2DMF·12H2O·8EtOH (2) were synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, elemental analyses, thermogravimetric analyses, and powder X-ray diffraction. Single-crystal X-ray diffraction analysis revealed that both complexes 1 and 2 are built of the Cu2(COO)4 paddlewheel secondary building units with an fmj topology. Importantly, complex 1 can be transformed into complex 2 by the single-crystal to single-crystal transformation of which the coordinated water molecules are replaced with pyz molecules. However, the adsorption abilities of 2 are obviously lower than those of 1, as its pores are partially blocked by pyz molecules. Moreover, gas-adsorption analysis showed that the amino-functional 1 possesses higher gas-adsorption capacity than UMCM-151 for N2, H2, CH4, and C2H2, especially for CO2.