Epithelium-specific Ets transcription factor-1 acts as a negative regulator of cyclooxygenase-2 in human rheumatoid arthritis synovial fibroblasts

Cell Biosci. 2016 Jun 16:6:43. doi: 10.1186/s13578-016-0105-7. eCollection 2016.

Abstract

Background: Rheumatoid arthritis (RA) is characterized by excessive synovial inflammation. Cyclooxygenase-2 (COX-2) is an enzyme that catalyzes the conversion of arachidonic acid (AA) into prostaglandins. Epithelium-specific Ets transcription factor-1 (ESE-1) was previously demonstrated to upregulate COX-2 in co-operation with nuclear factor kappa B (NFκB) in macrophages and chondrocytes. However, the role of ESE-1 in RA pathology has remained unclear. In this study, we aimed to elucidate the relationship between ESE-1 and COX-2 in RA synovial fibroblasts (RASFs) using a HD-Ad-mediated knockdown approach.

Results: ESE-1 and COX-2 were induced by IL-1β in RASFs that corresponded with an increase in PGE2. Endogenous levels of ESE-1 and COX-2 in human RASFs were analyzed by RT-qPCR and Western blot, and PGE2 was quantified using competitive ELISA. Interestingly, knockdown of ESE-1 using helper-dependent adenovirus (HD-Ad) led to a significant upregulation of COX-2 at a later phase of IL-1β stimulation. Examination of ESE-1 intracellular localization by nuclear fractionation revealed that ESE-1 was localized in the nucleus, occupying disparate cellular compartments to NFκB when COX-2 was increased. To confirm the ESE-1-COX-2 relationship in other cellular systems, COX-2 was also measured in SW982 synovial sarcoma cell line and ESE-1 knockout (KO) murine macrophages. Similarly, knockdown of ESE-1 transcriptionally upregulated COX-2 in SW982 and ESE-1 KO murine macrophages, suggesting that ESE-1 may be involved in the resolution of inflammation.

Conclusion: ESE-1 acts as a negative regulator of COX-2 in human RASFs and its effect on COX-2 is NFκB-independent.

Keywords: COX-2; ESE-1; Helper-dependent adenovirus; Inflammation; Prostaglandins; Rheumatoid arthritis; Synovial fibroblasts.