Dual-band optical coherence tomography using a single supercontinuum laser source

J Biomed Opt. 2016 Jun 1;21(6):66013. doi: 10.1117/1.JBO.21.6.066013.

Abstract

We developed a simultaneous visible-light (Vis) and near-infrared (NIR) dual-band optical coherence tomography (OCT) system using a single supercontinuum laser source. The goal was to benchmark our newly developed Vis-OCT against the well-developed NIR-OCT. The Vis-OCT subsystem operated at 91 nm full-width-at-half-maximum (FWHM) bandwidth centered at 566 nm; the NIR-OCT subsystem operated at 93 nm FWHM bandwidth centered at 841 nm. The axial resolutions were 1.8 and 4.4 μm in air for the Vis- and NIR-OCT subsystems, respectively. We compared the respective performances, including anatomical imaging, angiography, absolute retinal blood flow measurements, and spectroscopic analysis for retinal blood oxygen saturation (sO2), between the two subsystems in rodents in vivo. While demonstrating minor discrepancies related to operation wavelengths, both subsystems showed comparable performances in the first three tests. However, we were only able to retrieve sO2 using the Vis-OCT subsystem.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Infrared Rays
  • Lasers*
  • Light
  • Mice
  • Regional Blood Flow
  • Retina / diagnostic imaging
  • Spectrum Analysis
  • Tomography, Optical Coherence / instrumentation*